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ABSTRACT : The association rule mining on Market "Basket Data" is Boolean Association Rule Mining in
which only Boolean attributes are considered. In order to do association rule mining on quantitative data,
Association rule mining is one of the important problems of data mining. The goal of the Association rule
mining is to detect relationships or associations between specific values of categorical variables in large data sets.
This is a common task in many data mining projects. In this paper we are using Association Rule mining without
pre-assign weights and its implementation in matlab. In the past, several authors have proposed various association
rule mining algorithms with and without pre-assigned weights. The paper consists of two parts. Part two consists
of association rule mining for frequent itemset. Complete implementation has been done in Matlab on various
real life datasets. Part one consisted of association rule mining without pre-assigned weights using binary form.

I. INTRODUCTION

Association rule mining (Aggarwal et. al [1]., 1993) is
one of the important problemsof data mining. The goal of
the Association rule mining is to detect relationships
orassociations between specific values of categorical
variables in large data sets. Thisis acommon task in many
data mining projects. Suppose | is a set of items, D is a set
oftransactions, an association rule is an implication of the
form X =>Y, where X, Y aresubsets of |, and X, Y do not
intersect. Each rule has two measures, support
andconfidence. Association rule mining was originally
proposed in the domain of marketbasket data. The
association rule mining on Market "Basket Data" is Boolean
Association Rule.

Mining in which only Boolean attributes are
considered. In order to do association rule mining on
guantitative data, such as Remotedly Sensing Image data,
some mapping should be done from quantitative data to
Boolean data. The main idea here is to partition the attribute
values into Transaction Patterns.

Basically, this technique enables analysts and
researchers to uncover hidden patterns in large data sets.

Notation and basic concepts

Let ?={i1, i2 ... im} be auniverse of items. Also, let
T={t1, t2 ... tn} beaset of al transactions collected over
agiven period of time. To simplify a problem, we will assume
that every item i can be purchased only once in any given
transaction t. Thust ? ? ("t is a subset of omega'). In
reality, each transaction t is assigned a number, for example
atransaction id (TID).

A. Support

The support of an itemset is the fraction of the rows
of the database that contain all of the items in the itemset.
Support indicates the frequencies of the occurring patterns.

Sometimes it is called frequency. Support is simply a
probability that a randomly chosen transaction t contains
both itemsets A and B.

B. Confidence

Confidence denotes the strength of implication in the
rule. Sometimes it is called accuracy. Confidence is simply
a probability that an itemset B is purchased in a randomly
chosen transaction t given that the itemset A is purchased
In general, a set of items (such as the antecedent or the
consequent of a rule) is called an itemset. The number of
items in an itemset is called the length of an itemset.
Itemsets of some length k are referred to as k-itemsets.
Generaly, an association rules mining algorithm contains
the following steps:

e The set of candidate k-itemsets is generated by
1-extensions of the large (k — 1)-itemsets generated
in the previous iteration.

e Supports for the candidate k-itemsets are generated
by a pass over the database.

e |temsets that do not have the minimum support are
discarded and the remaining itemsets are called large
k-itemsets.

Il. PROPOSED WORK

All, there is not weights to items and transactions.
Wheresas, using weighted association rule mining, we have
to assign weights to items and/or transactions. In Weighted
association rule mining, we have to assign weight to items
and/or transactions at the beginning in the database. But
according to Ke.

Sun [1], we can find weights of items and weights of
transactions. Method to assign weights to items on the
basis of items belongs to transactions, and similarly we
can find weight of transaction on the basis of items, that
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are available in transactions. And also, if an item belongs
in more transactions, then weight or importance of that
item is high. Similarly, if a transaction that contains many
items, then weight or importance of that transaction is also
high. i.e, a good transaction, which is highly weighted,
should contain many good items; at the same time, a good
item should be contained by many good transactions. The
reinforcing relationship of transactions and items is just
like the relationship between hubs and transaction. So, we
can find weights of items and weights of transactions by
Transaction. We can assume that every transaction as a
link/hub (which contain many items) and items belong to
the transaction as an authority (item belongs to many link).
Wang and Su [9] proposed a novel approach on item
ranking. A directed graph is created where nodes denote
items and links represent association rules. A generalized
version of Transaction is applied to the graph to rank the
items, where all nodes and links are allowed tohave weights
[10].

Transactions are:

1. = Bread, Milk

2. = Bread, Beer, Diaper, Eggs
3. = Milk, Beer, Diaper, Coke

4. = Bread, Milk, Beer, Diaper
5. = Bread, Milk, Diaper, Coke

In this data set we are calculating the weights before
this we are normalized the dataset and then calculating the
final hub weights and after taking and calculating the weight
then we apply apriori with this calculating weights. This
weight helps us for finding the frequent item set. For
calculating frequent item set we are taking 50% threshold
value. The item whose support is less then 50% they are
neglecting and then we apply 2-frequent item set and again
the sets whose support is less than 50% they are neglected.
and this process is repeated until all items which are less
than 50%. Implementation and Result For all these
implementation have been compared on different datasets.
Datasets that has taken which is real life datasets as well
as computer generated datasets (IBM Synthetic data
generator). There are so many real life datasets which were
taken, these are

Kosarak. The kosarak dataset comes from the
click-stream data of a Hungarian online news portal, Number
of Instances = 990,002, Number of Attributes = 41,270.

Chess. A game datasets. Attribute Information: Classes
(2): — White-can-win ("won") and White-cannot-win
("nowin"). It believes that White is deemed to be unable
to win if the Black pawn can safely advance. Number of
Instances = 3196, Number of Attributes =36.

Retail. This is retail datasets, Number of Instances
= 16470, Number of Attributes = 88162

Mushroom. This data set includes descriptions of
hypothetical samples corresponding to 23 species of gilled
mushrooms. Each species is identified as definitely edible,
definitely poisonous, or of unknown edibility and not
recommended. This latter class was combined with the
poisonous one. The Guide clearly states that there is no
simple rule for determining the edibility of a mushroom.
Number of Instances = 8124, Number of Attributes = 22.

Connect. This database contains all legal 8-ply
positions in the game of connect-4 in which neither player
has won yet, and in which the next move is not forced.
Number of Instances = 67557, Number of Attributes = 42.

Plumbs Sar. Number of Instances = 49046, Number
of Attributes = 49046.43. Some implementations have been
done on IBM Synthetic data generator datasets, with
different sizes, with different transaction, with different
number of items in each transaction.

Database name Mushroom
Largeitem setsTime by Apriori Time by Primitive

3 0.46 0.29
4 2.166 1.86
5 12.04 11.11
4 6.12 7.12

Database name Retail
Largeitem setsTime by Apriori Time by primitive

3 159 145
4 163 15
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I11. CONCLUSION

An efficient way for discovering the frequent set can
be very useful in various data mining problems, such as
discovery of association rules. In this Thesis, new
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